Telegram Group & Telegram Channel
Как label smoothing изменяет ландшафт функции кросс-энтропии и почему это улучшает обобщающую способность модели

Label smoothing заменяет строгое one-hot представление меток, уменьшая вероятность правильного класса с 1.0 до (1 — epsilon) (например, 0.9) и равномерно распределяя (epsilon) между остальными классами. Это снижает излишнюю уверенность модели в предсказаниях, что улучшает ее способность к обобщению и уменьшает переобучение.

Основные эффекты label smoothing:
🔹 Смягчение штрафа за ошибки — градиенты становятся более стабильными, что предотвращает резкие скачки обучения.
🔹 Снижение переуверенности модели — уменьшает вероятность резких предсказаний (например, 0.99 vs. 0.01).
🔹 Улучшение обобщающей способности — модель не запоминает данные, а учится выявлять более общие закономерности.

Label smoothing активно используется в передовых моделях для обработки изображений и текста (например, в Transformers) и является простой, но эффективной техникой регуляризации.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/905
Create:
Last Update:

Как label smoothing изменяет ландшафт функции кросс-энтропии и почему это улучшает обобщающую способность модели

Label smoothing заменяет строгое one-hot представление меток, уменьшая вероятность правильного класса с 1.0 до (1 — epsilon) (например, 0.9) и равномерно распределяя (epsilon) между остальными классами. Это снижает излишнюю уверенность модели в предсказаниях, что улучшает ее способность к обобщению и уменьшает переобучение.

Основные эффекты label smoothing:
🔹 Смягчение штрафа за ошибки — градиенты становятся более стабильными, что предотвращает резкие скачки обучения.
🔹 Снижение переуверенности модели — уменьшает вероятность резких предсказаний (например, 0.99 vs. 0.01).
🔹 Улучшение обобщающей способности — модель не запоминает данные, а учится выявлять более общие закономерности.

Label smoothing активно используется в передовых моделях для обработки изображений и текста (например, в Transformers) и является простой, но эффективной техникой регуляризации.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/905

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from nl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA